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Abstract
The tau-oscillator is a one-dimensional quantum-mechanical oscillator which
can exist only below a critical temperature Tmax. Its quantized energy levels
have the usual form but, unusually, these degeneracies involve the energy
levels. A generalized equipartition law is also found and the constant volume
heat capacity can exhibit a Schottky anomaly.

PACS numbers: 05.20.−y, 05.30.−d

Most physical systems cannot exist above a certain characteristic temperature. At this
temperature some constituent chemical may decompose, a phase change may occur, a new
chemical reaction may be initiated, etc. We have sought to study this situation from the point
of view of basic physics but to our surprise have found no relevant literature. As an example
we took the one-dimensional quantum-mechanical oscillator and present the results below.

One knows that a thermodynamic function may, with only minor additional assumptions,
determine the energy level spectrum of a system. This is shown explicitly starting from the
energy variance in the case of the 1D harmonic oscillator. One can also start with its entropy
expression ([1], section 16.4, [2]).

Now proceed to the case when there is a maximum temperature Tmax at which this
oscillator can exist. We shall call this system a tau-oscillator. Tau is a reminder of the
importance of the temperature for this system.

Recall that for N identical one-dimensional quantum-mechanical oscillators the energy
variance σ 2

E per particle equals the square of the mean energy per particle, reduced by the
square of the zero-point or ground-state energy level, E2

gs. Also, with β ≡ 1/kT ,

σ 2
E = −

(
∂U

∂β

)
V,N

(1)
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([1], equation (16.3)) where U is the average energy per particle and V the volume of the
system. It follows that

dβ = dU

E2
gs − U 2

. (2)

Our key assumption is now that the system cannot exist above a maximum temperature
Tmax, giving rise to

βmin ≡ 1

kTmax
and �β ≡ β − βmin.

Then there is a maximum mean energy per particle Umax of the system. After some algebra
an integration of (2) yields

U = Egs
exp(2Egs�β) + r

exp(2Egs�β) − r
(3)

r ≡ Umax − Egs

Umax + Egs
> 0. (4)

When T → Tmax, β → βmin,�β → 0 and U → Umax, as expected.
We now use the standard result

U = −
(

∂ ln Z

∂β

)
V,N

= −
(

∂ ln Z

∂�β

)
V,N

(5)

where Z is the canonical partition function. This integration to obtain Z, though elementary,
involves some lines of algebra, and yields

Z = Z0 exp(Egs�β)

exp(2Egs�β) − r
(6)

where Z0 is a constant of integration. Expanding 1/[exp(2Egs�β) − r] of equation (6) in a
Taylor series, one finds

Z =
∞∑

n=0

Z0r
n exp

[
−2Egs

(
n +

1

2

)
�β

]
≡

∞∑
n=0

gn exp(−βEn). (7)

We learn from this that the tau-oscillator, which has a zero-point energy Egs and exists only
below a maximum temperature Tmax, has the following energy levels and degeneracies:

En = 2Egs
(
n + 1

2

)
(8)

and

gn ≡ Z0r
n exp(βminEn) (n = 0, 1, . . .). (9)

The degeneracy is unusual in that it is not an integer, and it is unexpected in that it involves
the energy levels.

Simple calculations prove that the usual argument leading from the Lagrangian multiplier
β to 1/kT and to equations (1) and (5) is not affected by the fact that β has a limited range of
existence.

One obtains a new equipartition law, i.e. the law for the tau-oscillator, by passing to the
limit Egs → 0 in equations (3) and (4). One finds

lim
Egs→0

U = kT

1 − T
Tmax

. (10)

Of course, in the usual case Tmax → ∞ the normal equipartition law is found from (10).
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Figure 1. Constant volume heat capacity as a function of temperature for two systems of
different quantum tau-oscillators. Curve A applies to a tau-oscillator close to the usual quantum

oscillator (
Egs

Umax
= 10−8 and

Egs
kTmax

= 10−8). Curve B applies to a tau-oscillator far from

usual conditions (
Egs

Umax
= 0.1 and

Egs
kTmax

= 0.01). The usual quantum oscillator corresponds to
Umax → ∞, Tmax → ∞.

Table 1. Internal energy Uand constant volume heat capacity CV for various oscillators.

System U CV ≡ ∂U
∂T

1. Classical oscillator 1
β

= kT k

(Egs = 0, Tmax → ∞)
2. Classical tau-oscillator kT

1− T
Tmax

k

(1− T
Tmax

)2

(Egs = 0, Tmax < ∞)

3. Quantum oscillator Egs
exp(2Egsβ)+1
exp(2Egsβ)−1 k

4E2
gsβ

2 exp(2Egsβ)

[exp(2Egsβ)−1]2

(Egs > 0, Tmax → ∞)

4. Quantum tau-oscillator Egs
exp(2Egs�β)+r

exp(2Egs�β)−r
k

4E2
gsβ

2r exp(2Egs�β)

[exp(2Egs�β)−r]2

(Egs > 0, Tmax < ∞)

Another special case is found from (9) in the limit of the usual quantum oscillator:

Tmax → ∞ βmin → 0 r → 1 and gn → Z0.

Table 1 summarizes formulae for the internal energy and the constant volume heat capacity
CV ≡ ∂U

∂T
for various classical and quantum oscillators. Simple algebra proves that when

applied to U , the operators ∂
∂T

and limEgs→0 commute for the usual quantum oscillator but do
not commute for the quantum tau-oscillator.

Figure 1 shows the dependence of CV on temperature for two tau-oscillator systems.
Curve A applies to a tau-oscillator close to the usual quantum oscillator while curve B refers
to a tau-oscillator far from usual conditions. The maximum of CV in the case B is similar to the
so-called Schottky anomalies in the heat capacity due to internal freedom degrees activated
by magnetic fields and other causes (see figure 14 of [3] for instance). Conditions for the
occurrence of a local maximum in the heat capacity of tau-oscillators are briefly explained
below. One uses the following notation:

x ≡ Egsβ = Egs

kT
xmin = Egsβmin = Egs

kTmax
. (11)



L594 Letter to the Editor

Using (11) in table 1 row four yields

CV

k
= 4x2r exp[2(x − xmin)]

{exp[2(x − xmin)] − r}2
. (12)

To obtain a local maximum for the heat capacity one computes
d
(

CV
k

)
dx

= 0 and from (12) one
finds

1 − x

1 + x
exp[2(x − xmin)] = r < 1. (13)

Solving equation (13) in the unknown x will determine that value x̃ where the heat capacity
is a maximum (say CV,max). One can see that xmin < x̃ < 1. The last inequality applies
because r > 0 in (13). The lhs of equation (13) is a monotonous decreasing function of x and
a solution exists if

1 − xmin

1 + xmin
exp[2(xmin − xmin)] > r. (14)

Using (4) and (11) one finds that (14) requires

Egs

Umax
>

Egs

kTmax
and kTmax > Umax. (15)

When equation (15) is fulfilled (case of curve B in figure 1) the heat capacity has a maximum.
Otherwise, it has a monotonous variation as a function of temperature (case of curve A in
figure 1).

Now, let us suppose equation (15) is fulfilled. Then the solution x̃ of equation (13)
verifies, of course,

1 − x̃

1 + x̃
exp[2(x̃ − xmin)] = r. (13′)

Use of (13′) in (12) gives the maximum heat capacity as follows:

CV,max

k
= 1

x̃
− x̃ (16)

CV,max has a monotonous dependence on x̃. When x̃ varies between xmin and 1, CV,max varies
between 1

xmin
− xmin and 0. One can see that CV,max/k can be larger or smaller than the unity

as follows:

x̃ < x̃cr ⇒ CV,max

k
> 1 (17a)

x̃ > x̃cr ⇒ CV,max

k
< 1 (17b)

where the critical value x̃cr (related to the critical temperature Tcr) is incidentally given by the
golden section

x̃cr ≡ Egs

kTcr
=

√
5 − 1

2
(18)

(x̃cr is obtained by making CV,max

k
= 1 in equation (16)). We conclude that there is a possibility

of a very sharp maximum, under the condition (17a) above and x̃ very close to xmin in
equation (16), as already noted in the case of Schottky anomalies [3].

Our study is theoretically based and to link the results to specific experiments is a major
task best left to the people who have conducted these experiments, of which there are plenty.
We enumerate below a few systems showing specific heat maximas:
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1. Helium-4 confined to a 9869 A planar geometry [4].
2. The heat capacity of erbium exhibits a maximum near 18.7 K. This is presumed to be due

to an antiferromagnetic to ferromagnetic phase transition [5].
3. A heat capacity maximum due to magnetic short-range order was observed at 1.4 K in an

organic spin-1 Kagome antiferromagnet [6].
4. An excess specific heat maximum occurred at 307.7 K in a colloidal microgel system [7].

The fact that there are so many examples of specific heat maxima does suggest the
desirability of having a general theory of the type we are proposing. Extensions of this work
to Fermi and Bose systems are being prepared for publication.
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